Proced	ure:
1.	Working with the materials provided, design and build a single axle car powered by the balloon, (It should leak like a phariet)
2.	balloon. (It should look like a chariot) Test and modify your car until it can travel between 1-2 meters in a straight line .
3.	Record data for time and distance in the data table.
4. 5.	Find the mass of your car. Return all reusable items to the supply area. (Straws, stick, wheels)
Data a	nd Observations:
	Mass of car_14.3 g0.0143 kg
	Distance car traveled2 m
Analysi	is Questions:
1.	What is the outside force causing your balloon car to stop its motion?
2.	Calculate the acceleration of your balloon car using the data you gathered.
3.	Calculate the force (in N) of the air leaving the balloon.
4.	Calculate the weight of your balloon car in Newtons .
	VA/le cut I ale qui di lue qui unicile tire qui u
1.	What I should know right now: Force information and bucket questions (multiple choice about these questions)
2.	Newton's 3 Laws:
1st Law	is the Law of
	What is inertia?
2 nd Law	<i>r</i> is
	1. If you increase the mass, what should happen to acceleration? (force is constant
	2. If you increase the force, what should happen to the acceleration? (mass consta
	3. Force and mass are related.
	4. Mass and acceleration are related.
	5. Force and acceleration arerelated.

Name _____ Hour ____

Name	Hour
	 A car (m=1400 kg) moving initially at a speed of 55.5 mph is brought to a stop in a distance of 25.4 m.
	a. Calculate the time required to stop. (2.05 sec)
	b. Calculate the force acting on the car. (-16950 N)
	c. Calculate the weight of the car in Newtons. (-13,720 N)
3 rd Law	If I exert a force of 500 N on the floor, how much force does the floor exert on me?
	 A hammer hits a nail with a force of 20 N. a. How much force does the nail hit the hammer with? b. Which one should accelerate at a greater rate and WHY?
Weight	vs. Mass: Mass is the amount of measured in
	Weight is the pull of on your measured in
	Weight is a FORCE!!!!! The equation to solve for weight is
1.	Find your weight in Newtons if you weigh 157 lbs. (-699 N)
2.	Find your weight in lbs if you weigh -788 N. (177 lbs)
Equilibr	ium: Equilibrium occurs when there is no change in an object's
	What are the 2 times equilibrium occurs?
	The net force of an object in equilibrium is
	When an object is in equilibrium, are there any forces acting on it? What is terminal velocity?