\qquad Hour \qquad

BALLOON CAR LAB and Review for Quiz

Procedure:

1. Working with the materials provided, design and build a single axle car powered by the balloon. (It should look like a chariot)
2. Test and modify your car until it can travel between 1-2 meters in a straight line.
3. Record data for time and distance in the data table.
4. Find the mass of your car.
5. Return all reusable items to the supply area. (Straws, stick, wheels)

Data and Observations:

Mass of car _14.3 \qquad g __0.0143_kg

Distance car traveled \qquad 2 \qquad m

Time \qquad 1.47 \qquad seconds

Analysis Questions:

1. What is the outside force causing your balloon car to stop its motion? \qquad
2. Calculate the acceleration of your balloon car using the data you gathered.
3. Calculate the force (in N) of the air leaving the balloon.
4. Calculate the weight of your balloon car in Newtons.

What I should know right now:

1. Force information and bucket questions (multiple choice about these questions)
2. Newton's 3 Laws:

1 $^{\text {st }}$ Law is the Law of \qquad
What is inertia? \qquad
$2^{\text {nd }}$ Law is \qquad

1. If you increase the mass, what should happen to acceleration? (force is constant)
2. If you increase the force, what should happen to the acceleration? (mass constant)
3. Force and mass are \qquad related.
4. Mass and acceleration are \qquad related.
5. Force and acceleration are \qquad related.
\qquad Hour \qquad
6. A car $(\mathrm{m}=1400 \mathrm{~kg})$ moving initially at a speed of 55.5 mph is brought to a stop in a distance of 25.4 m .
a. Calculate the time required to stop. (2.05 sec)
b. Calculate the force acting on the car. (-16950 N)
c. Calculate the weight of the car in Newtons. (-13,720 N)

3rd Law is

1. If I exert a force of 500 N on the floor, how much force does the floor exert on me?
2. A hammer hits a nail with a force of 20 N .
a. How much force does the nail hit the hammer with? \qquad
b. Which one should accelerate at a greater rate and WHY?

Weight vs. Mass:

Mass is the amount of \qquad measured in \qquad
Weight is the pull of \qquad on your \qquad measured in \qquad

Weight is a FORCE!!!!! The equation to solve for weight is \qquad

1. Find your weight in Newtons if you weigh 157 Ibs. (-699 N)
2. Find your weight in lbs if you weigh - -788 N . (177 lbs)

Equilibrium:

Equilibrium occurs when there is no change in an object's \qquad
What are the 2 times equilibrium occurs?

The net force of an object in equilibrium is \qquad
When an object is in equilibrium, are there any forces acting on it? \qquad
What is terminal velocity?

